144
Bioremediation for Sustainable Environmental Cleanup
Volke, D. C., L. Friis, N. T. Wirth, J. Turlin and P. I. Nikel. 2020. Synthetic control of plasmid replication enables
target-and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metab. Eng.
Commun. 10: e00126.
Wallis, J. G., J. L. Watts and J. Browse. 2002. Polyunsaturated fatty acid synthesis: what will they think of next?
Trends Biochem. Sci. 27(9): 467–473.
Wang, J. P., L. X. Wu, F. Xu, J. Lv, H. J. Jin and S. F. Chen. 2010. Metabolic engineering for ethylene production
by inserting the ethylene-forming enzyme gene (efe) at the 16S rDNA sites of Pseudomonas putida KT2440.
Bioresour. Technol. 101(16): 6404–6409.
Wang, Y., C. Zhang, T. Gong, Z. Zuo, F. Zhao, X. Fan, C. Yang and C. Song. 2015. An upp-based markerless gene
replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina
NK-01 and Pseudomonas putida KT2440. J. Microbiol. Methods. 113: 27–33.
Watanabe, K., K. Nagahama and M. Sato. 1998. A conjugative plasmid carrying the efe gene for the ethylene-forming
enzyme isolated from Pseudomonas syringae pv. Glycinea. Phytopathol. 88(11): 1205–1209.
Whited, G. M. and D. T. Gibson. 1991. Toluene-4-monooxygenase, a three-component enzyme system that catalyzes
the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1. J. Bacteriol. 173(9): 3010–3016.
WHO. 2003. Concise International Chemical Assessment Document 56:1,2,3-Trichloropropane. Geneva.
Worsey, M. J. and P. A. Williams. 1975. Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2:
evidence for a new function of the TOL plasmid. J. Bacteriol. 124(1): 7–13.
Xiao, Y., S. Chen, Y. Gao, W. Hu, M. Hu and G. Zhong. 2015. Isolation of a novel beta-cypermethrin degrading strain
Bacillus subtilis BSF01 and its biodegradation pathway. Appl. Microbiol. Biotechnol. 99(6): 2849–2859.
Yang, Y. H., C. J. Brigham, E. Song, J. M. Jeon, C. K. Rha and A. J. Sinskey. 2012. Biosynthesis of poly
(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) containing a predominant amount of 3‐hydroxyvalerate by
engineered Escherichia coli expressing propionate‐C o A transferase. 113(4): 815–823.
Yoshida, T. and N. Sethunathan. 1973. A Flat~ obacterium that degrades diazinon and parathion. Can. J. Microbiol.
19: 873–875.
Yoshida, T. and T. Nagasawa. 2007. Biological Kolbe-Schmitt carboxylation: possible use of enzymes for the direct
carboxylation of organic substrates. In: T. Matsuda [Ed.]. Future Directions in Biocatalysis. Elsevier Science.
You, I. S. and R. Bartha. 1982. Metabolism of 3, 4-dichloroaniline by Pseudomonas putida. J. Agric. Food Chem.
30(2): 274–277.
Yu, S., M. R. Plan, G. Winter and J. O. Krömer. 2016. Metabolic engineering of Pseudomonas putida KT2440 for the
production of para-Hydroxy Benzoic Acid. Front. Bioeng. Biotechnol. 4: 90.
Zhang, R., X. Xu, W. Chen and Q. Huang. 2016. Genetically engineered Pseudomonas putida X3 strain and its
potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium. Appl.
Microbiol. Biotechnol. 100(4): 1987–1997.
Zhang, Y. X., K. Perry, V. A. Vinci, K. Powell, W. P. Stemmer and S. B. delCardayré. 2002. Genome shuffling leads
to rapid phenotypic improvement in bacteria. Nature. 415(6872): 644–646.
Zhao, J., D. Jia, J. Du, Y. Chi and K. Yao. 2019a. Substrate regulation on co-metabolic degradation of β-cypermethrin
by Bacillus licheniformis B-1. AMB Express. 9(1): 44866.
Zhao, J., X. Chen, H. X. Wei, J. Lv, C. Chen, X. Y. Liu, Q. Wen and L. M. Jia. 2019b. Nutrient uptake and utilization
in Prince Rupprecht’s larch (Larix principis-rupprechtii Mayr.) seedlings exposed to a combination of light-
emitting diode spectra and exponential fertilization. Soil Sci. Plant Nutr. 65(4): 358–368.
Zhongli, C., L. Shunpeng and F. Guoping. 2001. Isolation of methyl parathion-degrading strain M6 and cloning of the
methyl parathion hydrolase gene. Appl. Environ. Microbiol. 67(10): 4922–5.
Zylstra, G. J., W. R. McCombie, D. T. Gibson and B. A. Finette. 1988. Toluene degradation by Pseudomonas putida
F1: genetic organization of the tod operon. Appl. Environ. Microbiol. 54(6): 1498–1503.
Zylstra, G. J., S. W. Bang, L. M. Newman and L. L. Perry. 2000. Microbial degradation of mononitrophenols and
mononitrobenzoates. pp. 145–160 In: J. C. Spain, J. B. Hughes and H. J. Knackmuss [Eds.]. Biodegradation
of Nitroaromatic Compounds and Explosives. CRC Press, FL.